B-h+h- at CDF G. Punzi for the CDF collaboration Wine&Cheese seminar FERMILAB, 10/27/06 ### Outline - Why B→h+h'- decays are interesting - How we reconstruct them at CDF - CDF results with a ~1 fb⁻¹ sample. (Previous results used 180pb-1 or 360pb-1) ### Charmless decays $B \rightarrow (\pi \pi / K \pi / K K)$ - The charmless decay modes of B hadrons are a great tool for probing the quark mixing matrix. - The b→u transition makes them sensitive to angle γ (phase of Vub), and to possible New Physics effects in Penguin diagrams. ### Charmless decays B $\rightarrow (\pi\pi/K\pi/KK)$ - The original CLEO finding of BR(B⁰ \rightarrow K⁺ π ⁻) >> BR(B⁰ \rightarrow π ⁺ π ⁻) revealed the importance of contributions beyond the tree level. - Interplay of multiple amplitudes makes them rich, but complex (Tree, Penguins, Annihilation...) - Measurements on B⁰ and B⁺ in recent years have provided a wealth of useful information, and theoretical work has flourished to interpret them: - QCD Factorization (QCDF): Beneke, Buchalla, Neubert & Sachrajda (1999–2001); ... - Perturbative Hard-Scattering (PQCD) Approach: Li & Yu ('95); Cheng, Li & Yang ('99); Keum, Li & Sanda ('00); ... - Soft Collinear Effective Theory (SCET): Bauer, Pirjol & Stewart (2001); Bauer, Grinstein, Pirjol & Stewart (2003); ... - QCD light-cone sum-rule methods: Khodjamirian (2001); Khodjamirian, Mannel & Melic (2003); - Simmetries: SU(3), isospin: Fleischer, Gronau.... - The presence of hadronic parameters calls for collecting a diverse sample of data, to allow canceling out hadronic parameters by taking ratios and performing global fits ### Example: $BR(B^0 \rightarrow hh)$ WA World average [EPS 2005] QCD FA Beneke and Neubert (hep-ph/0308039) pQCD Keum (hep-ph/0410337) Most results well described, but not all. The growth of data and improvement of predictions leads to the ability to detect discrepancies and reveal New Physics. ### **CP** violation - CP violation is special interest: understand CKM + detect NP via anomalies - Mixing-induced CP violation provides information on CKM angle α . - Direct CP violation a probe into new effects. Unfortunately not easy to predict. - Requires interference of two amplitudes with different weak and strong phases. - Direct CP Violation in B $\rightarrow \pi\pi$ in *disagreement* in the two e+e- B-factories. - DCPV easier to measure in self-tagging modes. Only seen in $B^0 \to K^+\pi^-$, but the expected similar effect in B+ is not there: *New Physics*? More data can help, in particular from Bs modes, not yet explored by Babar and Belle ### The impact of Bs Measurement on other B hadrons extends our understanding Example of the effect of adding Bs information to a global BR fit: The right plot is obtained using CDF data from 180pb-1 [hep-ex/0607021, PRL in press] This particular example uses the approach of parameterizing SU(3) breaking and fitting the relevant parameters from data [Malcles, hep-ph/0606083]. Many other methods are possible. ### Impact of the B_s→KK mode ### Time-dependent CP asymmetries $$A_{cp}(t) = A_{cp}^{dir} \times \cos \Delta mt + A_{cp}^{mix} \times \sin \Delta mt$$ $$A_{cp}^{dir}(\pi^{+}\pi^{-}) = -\frac{2d\sin\theta\sin\gamma}{1-2d\cos\theta\cos\gamma+d^{2}}$$ $$A_{cp}^{dir}(K^{+}K^{-}) = \frac{2d\frac{1-\lambda^{2}}{\lambda^{2}}\sin\theta\sin\gamma}{1+2d\frac{1-\lambda^{2}}{\lambda^{2}}\cos\theta\cos\gamma+(\frac{1-\lambda^{2}}{\lambda^{2}})^{2}d^{2}}$$ $$A_{cp}^{mix}(K^{+}K^{-}) = \frac{\sin 2\gamma+2d\frac{1-\lambda^{2}}{\lambda^{2}}\cos\theta\sin\gamma}{1+2d\frac{1-\lambda^{2}}{\lambda^{2}}\cos\theta\cos\gamma+d^{2}(\frac{1-\lambda^{2}}{\lambda^{2}})^{2}}$$ $$A_{cp}^{mix}(\pi^{+}\pi^{-}) = \frac{\sin 2(\beta+\gamma)-2d\cos\theta\sin(2\beta+\gamma)+d^{2}\sin2\beta}{1-2d\cos\theta\cos\gamma+d^{2}}$$ $$A_{cp}^{mix}(J/\psi K_{s}) = \sin 2\beta$$ CP asymmetries related to $B^0 \rightarrow \pi\pi$ by U-spin relationship: determine angle γ and provide tests for New Physics. [R. Fleischer, Phys. Lett. B 459, 306] BR is an interesting issue: several contrasting predictions exist, testing them will improve understanding of the models and can also reveal New Physics In addition, allows measuring $\Delta\Gamma$ s. CDF has already performed a measurement on 360pb-1. ### B⁰→hh at CDF - The Tevatron has a lot to offer to this field: - Large B production and large Luminosity mean big samples - Access to all b-hadrons allows wide range of measurements - We can look for all combinations of π^\pm ,K $^\pm$ from Bs, Bd, $\Lambda_{ m b}$: - Known modes (larger BR): - $B^0 \rightarrow K^+\pi^-$ - $B^0 \rightarrow \pi^+\pi^-$ - $\blacksquare B_s^0 \rightarrow K^+K^-$ - Yet unobserved modes: - $B_s^0 \rightarrow K^- \pi^+$ - $B^0 \rightarrow K^+K^-$ - $\blacksquare \ \mathsf{B^0}_{\mathsf{s}} \to \pi^+\pi^-$ - $\Lambda_b \rightarrow pK$ - \blacksquare $\Lambda_b \rightarrow p\pi$ We just need to reconstruct them... ### Important CDF features - Central Drift chamber - $\sigma(p_T)/p_T^2 \sim 0.15\% \text{ GeV}^{-1}$ - dE/dx measurement, encoded in hit width - Silicon Vertex detector I.P. resolution 35µm@2GeV - Time of Flight - Used to measure the asymmetry of the proton background, to reduce systematics - Tracking trigger: - XFT at L1, 2D tracks in COT, p_T >1.5 GeV - SVT at L2, 2D tracks p_T>2 GeV, Impact parameter measurement ### Signal with initial cuts Signal (BR ~ 10⁻⁵⁾ clearly visible with just trigger cuts confirmation Variables used for further analysis: - 3D Vertex chi-square - Isolation: rejects light quark background (analog of event shape for e+e-) $$I(B) = \frac{Pt(B)}{Pt(B) + \sum_{cone} Pt_i}$$ ### **Choice of cuts** Cuts individually optimized by minimizing the expected statistical uncertainty on the quantity of interest. Its expression $\sigma(S,B)$ is determined from actual uncertainties observed in analysis of MC samples, and parameterized by an analitically-inspired model. Signal yield S is derived from MC simulation while the background B is estimated from mass sidebands on data. In practice, only 2 sets of cuts were needed: - (1) optimize on $A_{CP}(B^0 \rightarrow K^+\pi^-) => Loose cuts$ - good for all three "large modes" (B⁰ \rightarrow K⁺ π ⁻ , B⁰ \rightarrow π ⁺ π ⁻ , B⁰_s \rightarrow K⁺K⁻) - (2) optimize on $B_s^0 \rightarrow K^-\pi^+$ discovery [physics/0308063] \Rightarrow tight cuts - good for all "rare modes" When compared with $S/\sqrt{(S+B)}$: - ~10% better on $A_{CP}(B^0 \rightarrow K^+\pi^-)$ - ~27% better on BR($B^0_s \rightarrow K^-\pi^+$) ### **Loose cuts** Despite good mass resolution (≅22 MeV/c²), individual modes overlap in a single peak (width ~35 MeV/c²) Note that the use of a single mass assignment $(\pi\pi)$ causes overlap even with perfect resolution Blinded region of unobserved modes: $B_s^0 \rightarrow K\pi$, $B_s^0 \rightarrow \pi\pi$, $\Lambda_b^0 \rightarrow p\pi/pK$. Need to determine signal composition with a Likelihood fit, combining information from kinematics (mass and momenta) and particle ID (dE/dx). ### **Handle 1:invariant mass** Different modes are somewhat separated in mass (~50 Mev between Bd->Kpi and Bs->KK) However, results depend on assumed Mass resolution and details of the lineshape (rare modes confuse with the tails of larger modes) Need good control of non-gaussian resolution tails and radiative effects ## Calibrating Mass resolution and tails from the D⁰→Kpi peak ### Method: - Accurate parameterization of individual track parameters resolution functions from full MC (including non-gaussian tails) - 2. Add calculated QED radiation [Baracchini, Isidori Phys.Lett B633:309-313,2006] - 3. Generate mass lineshapes with a simple kinematical MC - 4. Compare results with a huge sample of D⁰→Kπ ⇒ perfect match, no tuning necessary ⇒ small systematics - 5. Generate B→hh templates and use them in the Likelihood fit. ### handle 2: track momenta #### **CDF MC** ### Kinematic variables: p_{min} (p_{max}) is the 3D track momentum with $p_{min} < p_{max}$ - 1) $M_{\pi\pi}$ invariant $\pi\pi$ -mass - 2) $\alpha = (1-p_{min}/p_{max})q_{min}$ signed p-imbalance - 3) $p_{tot} = p_{min} + p_{max}$ scalar sum of 3-momenta Each mode has an individual mass distribution $p(M_{\pi\pi}) = G(M_{\pi\pi} - F(\alpha, p_{tot}))$ This offers good discrimination amongst modes and between $K^+\pi^-/K^-\pi^+$. ### handle 3: dE/dx $D^{*+} \rightarrow D^0 \pi^+ \rightarrow [K^- \pi^+] \pi^+$ ~95% pure K and π samples from decays: $D^{*+}{\to}D^0\pi^+{\to}[K^-\pi^+]$ π^+ Strong D*+ decay tags the D⁰ flavor. dE/dx accurately calibrated over tracking volume and time. Detailed model includes tails, momentum dependence, two-track correlations (1.4σ K/π separation at p>2GeV) achieve a statistical uncertainty on separating classes of particles which is only 60% worse than perfect PID ### Putting it all together Unbinned ML fit using 5 observables $$\mathscr{L}(ec{ heta}) = \prod_{i=1}^N \mathscr{L}_i(ec{ heta})$$ fraction of jth mode, to be determined by the fit $$\mathscr{L}_i(\vec{\theta}) = (1 - b) \sum_{j} f_j \mathscr{L}_j^{\text{sign}} + b \mathscr{L}^{\text{bckg}}$$ $$pdf_{j}^{ ext{m}}(m_{\pi\pi}|lpha,p_{tot};ec{ heta})$$ $$pdf_{j}^{\,\mathrm{m}}(m_{\pi\pi}|lpha,p_{tot};ec{ heta})\cdot pdf_{j}^{\,\mathrm{p}}(lpha,p_{tot};ec{ heta})\cdot pdf_{j}^{\,\mathrm{PID}}(\mathsf{ID}_{1},\mathsf{ID}_{2}|p_{tot},lpha;ec{ heta})$$ Signal shapes: from MC and analytic formula Background shapes: from data sidebands sign and bckg shapes from $D^0 \rightarrow K^-\pi^+$ ### Loose cuts, raw fit results B⁰→ h⁺h^{'-} yields comparable to e⁺e⁻ Good separation. Compare to √N below: | parameter | fraction | yield | | |------------------------------------------|---------------------|---------------|-------------------------------| | $B^0 \to \pi^+ \pi^- + \text{c.c.}$ | | | | | $B^0 \to K^+\pi^- + {\rm c.c.}$ | (0.577 ± 0.010) | 4045 ± 84 | 1.3 σ/σ_{ideal} | | $B_s^0 \rightarrow K^+K^- + \text{c.c.}$ | (0.186 ± 0.009) | 1307 ± 64 | 1.8 | We only measure relative BRs and normalize to the $B^0 \rightarrow K^+\pi^-$ mode. ### Fit projections # Results for known modes ### $BR(B^0 \rightarrow \pi^+\pi^-)$ $$\frac{BR(B^0 \to \pi^+\pi^-)}{BR(B^0 \to K^+\pi^-)} = 0.259 \pm 0.017 \; (stat.) \pm 0.016 \; (syst.)$$ $$BR(B^0 \to \pi^+\pi^-) = (5.10 \pm 0.33 \ (stat.) \pm 0.36 \ (syst.)) \times 10^{-6}$$ - Precision measurements. systematic≅ statistics. - Confirm previous results in a very different experimental setting - •Good yield, bright perspectives for time-dependent measurements: expect similar resolution to e+e- with full runll sample ### Direct CP asymmetry $B^0 \rightarrow K^+\pi^-$ Large sample allows measuring DCPV Plot of L(B0)/[L(Bbar)+L(B0)] shows the good separation achieved between B0 and Bbar (mass, alpha, dE/dx) ### Significant raw asymmetry, good resolution: $$A_{\mathsf{CP}}\Big|_{\mathsf{raw}} = \frac{N_{\mathsf{raw}}(\overline{B}^0 \to K^-\pi^+) - N_{\mathsf{raw}}(B^0 \to K^+\pi^-)}{N_{\mathsf{raw}}(\overline{B}^0 \to K^-\pi^+) + N_{\mathsf{raw}}(B^0 \to K^+\pi^-)} = -0.092 \pm 0.023$$ ### Correcting the raw A_{CP} $$A_{\mathrm{CP}}(B^0 \to K^+\pi^-) \ = \ \frac{N_{\mathrm{raw}}(\overline{B}^0 \to K^-\pi^+) \cdot \frac{\varepsilon(K^+\pi^-)}{\varepsilon(K^-\pi^+)}}{N_{\mathrm{raw}}(\overline{B}^0 \to K^-\pi^+) \cdot \frac{\varepsilon(K^+\pi^-)}{\varepsilon(K^-\pi^+)} + N_{\mathrm{raw}}(B^0 \to K^+\pi^-)}} \times \frac{N_{\mathrm{raw}}(B^0 \to K^+\pi^-)}{N_{\mathrm{raw}}(B^0 \to K^+\pi^-)} K^-\pi^-)} \times \frac{N_{\mathrm{raw}}(B^0 \to K^-\pi^-)}{N_{\mathrm{raw}}(B^0 \to K^-\pi^-)} \times \frac{N_{\mathrm{raw}}(B^0 \to K^-\pi^-)}{N_{\mathrm{raw}}(B^0 \to K^-\pi^-)} \times \frac{N_{\mathrm{raw}}(B^0 \to K^-\pi^$$ Only the different K⁺/K⁻ interaction rate with material matters. K has a larger hadronic cross section than K⁺. Small (~0.6%) correction. Huge sample of prompt $D^0 \to h^+h^-$ (15M). Using the *same code* of the $B \to hh$ fit and the assumption that the direct $A_{CP}(D^0 \to K\pi)$ $\cong 0$ (SM) \Rightarrow measurement from the DATA of the efficiency ratio $\varepsilon(K^-\pi^+)/\varepsilon(K^+\pi^-)$: $$\frac{\epsilon(K^+\pi^-)}{\epsilon(K^-\pi^+)} = 1.0131 \pm 0.0028 \ (stat.).$$ This agrees with an indipendent evaluation from simulation of CDF detector material ## Results on $A_{CP}(B^0 \rightarrow K^+\pi^-)$ $$A_{\mathsf{CP}} = \frac{N(\overline{B}^0 \to K^- \pi^+) - N(B^0 \to K^+ \pi^-)}{N(\overline{B}^0 \to K^- \pi^+) + N(B^0 \to K^+ \pi^-)} = -0.086 \pm 0.023 \; (stat.) \pm 0.009 \; (syst.)$$ - ✓3.5σ effect. CDF agrees with e+e- - ✓WA significance $6 \sigma \rightarrow 7 \sigma$ - ✓ Discrepancy with $A_{CP}(B^+ \rightarrow K^+\pi^0)$ increases to 4.9 sigma. - ✓It has been argued that the constraint of equality is not reliable: a much more robust test exist, based on Bs->Kpi (more later). ## Systematics $A_{CP}(B^0 \rightarrow K^+\pi^-)$ - ☐ dE/dx model (±0.0064); - nominal *B*-meson masses input to the fit (±0.005); - global mass scale; - background charge-asymmetries (±0.001); - background model (±0.003). Total systematic uncertainty is 0.9%, compare with 2.3% statistical. The dominant systematics is due to the dE/dx. Additional crosscheck: measurement of $A_{CP}(D^0 \rightarrow K\pi)$ with dE/dx-only. The discrepancy of two fits ($\cong 0.006$) is within the quoted systematics. Systematics can still decrease with larger calibration samples Prospects for a runII CDF measurement with <1% uncertainty! ### Separating $B_s^0 \rightarrow K^+K^-$ from $B^0 \rightarrow \pi^+\pi^-$ PID separation $\pi\pi/KK \cong 2\sigma$ parameter fraction yield $B_s^0 \to K^+K^- + \text{c.c.}$ (0.186 ± 0.009) 1307 ± 64 Large sample ### Isolation cut efficiency In order to normalize Bs Branching Fraction, need to know the relative efficiency. The Isolation cut may affect Bs and B0 differently. Use data to measure it (p_T – dependent) Need low- p_T samples: low edge of $p_T \sim 3$ GeV Maximum Likelihood fit of yields in exclusive modes. ## $BR(B_s^0 \rightarrow K^+K^-)$ $$\frac{f_s \cdot BR(B_s^0 \to K^+K^-)}{f_d \cdot BR(B^0 \to K^+\pi^-)} = 0.324 \pm 0.019 \text{ (stat.)} \pm 0.041 \text{ (syst.)}$$ $$BR(B_s^0 \to K^+K^-) = (24.4 \pm 1.4 \ (stat.) \pm 4.6 \ (syst.)) \times 10^{-6}$$ Conservative systematics now, but soon systematics≅ statistics. Naively : BR(B⁰_s \rightarrow K⁺K⁻) \cong BR(B⁰ \rightarrow K⁺ π ⁻) \cong 20 10⁻⁶ QCD sum rules predict large SU(3) breaking BR(B $^0_s \rightarrow K^+K^-$) $\cong 35 \ 10^{-6}$ [Khodjamirian et al. PRD68:114007, 2003; Buras et al, Nucl. Phys. B697, 133,2004] More recently, 1/mb corrections give lower values again: BR(B⁰_s → K⁺K⁻) 20±8±4 10⁻⁶ [Descotes-Genon et al. PRL97, 061801, 2006] ## Prospects for $A_{CP}(B_s^0 \rightarrow K^+K^-)$ The large available sample allows expecting $\sigma(A_{CP}) \sim 0.2$ with runII sample This allows searches for new physics. See below a recent work quoting the present measurement about SUSY search # Search for new modes ### Rare modes search (tight cuts) ### 3 new rare modes observed $$N_{\text{raw}}(B_s^0 \to K^- \pi^+) = 230 \pm 34 \; (stat.) \pm 16 \; (syst.)$$ (85) $$N_{\text{raw}}(\Lambda_b^0 \to p\pi^-) = 110 \pm 18 \; (stat.) \pm 16 \; (syst.)$$ (60) $$N_{\rm raw}(\Lambda_b^0 \to pK^-) = 156 \pm 20 \; (stat.) \pm 11 \; (syst.)$$ (11σ) ## $B_s^0 \rightarrow K^-\pi^+$ $$N_{\text{raw}}(B_s^0 \to K^- \pi^+) = 230 \pm 34 \text{ (stat.)} \pm 16 \text{ (syst.)}$$ ## $BR(B_s^0 \to K^-\pi^+)$ $$\frac{f_s \cdot BR(B_s^0 \to K^- \pi^+)}{f_d \cdot BR(B^0 \to K^+ \pi^-)} = 0.066 \pm 0.010 \text{ (stat.)} \pm 0.010 \text{ (syst.)}$$ $$BR(B_s^0 \to K^- \pi^+) = (5.0 \pm 0.75 \text{ (stat.)} \pm 1.0 \text{ (syst.)}) \times 10^{-6}$$ Previous limit (CDF) < 5.4 @90% CL [Yu, Li, Yu, Phys.Rev. D71 (2005) 074026] #### PREDICTIONS: $[7 \div 10] \cdot 10^{-6}$ [Beneke&Neubert NP B675, 333(2003)] $[6 \div 10] \cdot 10^{-6}$ [Yu, Li, Yu, PRD71: 074026 (2005)] (4.9± 1.8)·10⁻⁶ [Williamson, Zupan: PRD74(2006)014003 ### Large sensitivity to angle α/γ [Gronau, Rosner, Phys. Lett. B 482, 71 (2000)] [Yu, Li, Yu, Phys.Rev. D71 (2005) 074026] ### DCPV $B_s^0 \rightarrow K^-\pi^+$ This decay offers a unique opportunity of investigating the source of CP violation, and the reason for the discrepancy observed in Bd: "Is observed direct CP violation in $B^0 \rightarrow K^+\pi^-$ due to new physics? Check standard Model prediction of equal violation in $B^0_s \rightarrow K^-\pi^+$ " [Lipkin, Phys. Lett. B621:126, .2005], [Gronau Rosner Phys.Rev. D71 (2005) 074019]. $$|A(B_s \to \pi^+ K^-)|^2 - |A(\bar{B}_s \to \pi^- K^+)|^2 = |A(\bar{B}_d \to \pi^+ K^-)|^2 - |A(B_d \to \pi^- K^+)|^2$$ This comparison of $B^0 \rightarrow K^+\pi^-$ and $B^0_s \rightarrow K^-\pi^+$ is a probe of NP in CP violation based on really minimal assumption. Currently unique to CDF. $$\frac{A_{CP}(B_s \to K^- \pi^+)}{A_{CP}(B_d \to K^+ \pi^-)} = \frac{BR(B_d \to K^+ \pi^-)}{BR(B_s \to K^- \pi^+)}$$ From our measured low BR, expect Large asymmetry $\approx 37\%$ ## DCPV $B_s^0 \rightarrow K^-\pi^+$ $$A_{\mathsf{CP}} = \frac{N(\overline{B}_s^0 \to K^+\pi^-) - N(B_s^0 \to K^-\pi^+)}{N(\overline{B}_s^0 \to K^+\pi^-) + N(B_s^0 \to K^-\pi^+)} = 0.39 \pm 0.15 \; (stat.) \pm 0.08 \; (syst.)$$ 2.5 σ $$|A(\bar{B}_d \to \pi^+ K^-)|^2 - |A(B_d \to \pi^- K^+)|^2$$ $|A(B_s \to \pi^+ K^-)|^2 - |A(\bar{B}_s \to \pi^- K^+)|^2$ $= 0.84 \pm 0.42(stat.) \pm 0.15(syst.) (SM = 1)$ First measurement of DCPV in the Bs Sign and magnitude agree with SM predictions within errors ⇒ no evidence for exotic sources of CP violation (yet) Very interesting to pursue with more data! ## DCPV $B_s^0 \rightarrow K^-\pi^+$ $$A_{\rm CP} = \frac{N(\overline{B}_s^0 \to K^+\pi^-) - N(B_s^0 \to K^-\pi^+)}{N(\overline{B}_s^0 \to K^+\pi^-) + N(B_s^0 \to K^-\pi^+)} = 0.39 \pm 0.15 \ (stat.) \pm 0.08 \ (syst.)$$ 2.5 σ First measurement of DCPV in the Bs Sign and magnitude agree with SM predictions within errors ⇒ no evidence for exotic sources of CP violation (yet) Very interesting to pursue with more data! ### First observation of $\Lambda^0_b \rightarrow p\pi^-$ and $\Lambda^0_b \rightarrow pK^-$ $$\frac{BR(\Lambda_b^0 \to p \pi^-)}{BR(\Lambda_b^0 \to p K^-)} \ = \ 0.66 \pm 0.14 \ (stat.) \pm 0.08 \ (syst.)$$ $$N_{\rm raw}(\Lambda_b^0 \to pK^-) = 156 \pm 20 \; (stat.) \pm 11 \; (syst.)$$ 11 o $$N_{\rm raw}(\Lambda_b^0 \to p\pi^-) = 110 \pm 18 \; (stat.) \pm 16 \; (syst.)$$ See for the first time a charmless decay of a B *barion*Ratio of BR in agreement with predictions (0.60-0.62) [Mohanta et al. Phys.Rev. D63 (2001) 074001] Individual BR and ACP measurements in progress # Even rarer modes: Weak annihilation ### **Pure-annihilation modes** - All final-state quarks different from initial state quarks. ⇒only via annihilation-type diagrams - Not yet observed. Small BR, with large uncertainties. - Depends on hard-to-predict hadronic parameters ⇒ large source of uncertainty in calculations. - CDF can look for $B_s \rightarrow \pi^+ \pi^-$ in addition to $B_d \rightarrow K^+ K^-$, B_s is expected larger by x3-x4. - To extract annihilation hadronic parameters, need BOTH measurements: $$\frac{1}{\epsilon} \left[\frac{\text{BR}(B_d \to K^+ K^-)}{\text{BR}(B_s \to \pi^+ \pi^-)} \right] \frac{\tau_{B_s^0}}{\tau_{B_d^0}} = \frac{1 + 2\varrho_{\mathcal{P}\mathcal{A}}\cos\vartheta_{\mathcal{P}\mathcal{A}}\cos\gamma + \varrho_{\mathcal{P}\mathcal{A}}^2}{\epsilon^2 - 2\epsilon\varrho_{\mathcal{P}\mathcal{A}}\cos\vartheta_{\mathcal{P}\mathcal{A}}\cos\gamma + \varrho_{\mathcal{P}\mathcal{A}}^2}$$ [Buras et al., Nucl.Phys. B697 (2004) 133] ## Results on $B_s^0 \rightarrow \pi^+\pi^-$ and $B^0 \rightarrow K^+K^-$ 1.5 σ $$BR(B^0 \to K^+K^-) = (0.39 \pm 0.16 \ (stat.) \pm 0.12 \ (syst.)) \times 10^{-6}$$ (< 0.7 · 10⁻⁶ @ 90% CL) #### New WA: 0.16 ± 0.11 [speaker's calculation] Expectations [0. 007 ÷ 0.08] ·10⁻⁶ [Beneke&Neubert NP B675, 333(2003)] \Rightarrow now in the region of interest 1.5 σ $BR(B_s^0 \to \pi^+\pi^-) = (0.53 \pm 0.31 \ (stat.) \pm 0.40 \ (syst.)) \times 10^{-6}$ **Current best limit** <1.36 · 10⁻⁶ @ 90% CL Expectations: $[0.024 \div 0.16] \cdot 10^{-6}$ [Beneke&Neubert NP B675, 333(2003)] $0.42 \pm 0.06 \cdot 10^{-6}$ [Li et al. hep-ph/0404028] We have reached the interesting region for these channels. A signal may be just around the corner ### Summary - Large set of measurements - First observation of $B_s^0 \rightarrow K^{\bar{}}\pi^+$ mode - First observation of B-baryon modes $\Lambda_b \to pK$ / $p\pi$ m - First measurement of DCPV in B_s^0 : $A_{CP}(B_s^0 \to K^{\scriptscriptstyle T}\pi^{\scriptscriptstyle +}) \text{ at } 2.5\sigma, \text{ in agreement with SM}$ - Precision $A_{CP}(B^0 \to K^+\pi^-)$ confirms B-factories results. Increase significance of DCPV to 7σ , and 4.9σ discrepancy with B^+ - Updated BR($B^0_s \rightarrow K^+K^-$) disfavors large U-spin breaking, agrees with latest predictions - Updated results on annihilation: $B^0 \rightarrow K^+K^ B^0_s \rightarrow \pi^+\pi^-$ CDF is contributing fresh new results in Charmless two-body decays of the B⁰, plus has unique results on B⁰_s and baryons. Much more data and more measurements are expected, including time-dependent. ## B⁰→hh people S. Donati, D. Tonelli, G. Volpi, M. Morello, G.P. ## Backup ### DATA SAMPLE 1fb⁻¹ ### Cuts optimized for ACP(BdKpi) | variable | cut | |---------------------------------|------------------------------| | # axial COT SL | $\geq 2(5 \text{ hits})$ | | # stereo COT SL | $\geq 2(5 \text{ hits})$ | | # $r - \phi$ SVXII hits | ≥ 3 | | tracking algorithm | sil. r- ϕ and 90°z hits | | $\mid \eta \mid$ | ≤1 | | p_T | $\geq 2~{ m GeV/c}$ | | $p_T(1) + p_T(2)$ | $\geq 5.5 \text{ GeV/c}$ | | $q(1) \cdot q(2)$ | < 0 | | $\Delta \phi$ | ≥20° | | $\Delta \phi$ | _
≤135° | | $\mid \overset{\cdot}{d_0}\mid$ | _
≥100 μm | | $ \stackrel{\circ}{d_0} $ | | | $d_0(1) \cdot d_0(2)$ | $<0 \text{ cm}^2$ | | variable | cut | |---|--------------------------| | \(\eta(B) | ≤ 1 | | $\mid d_0(B) \mid$ | $\leq 80~\mu\mathrm{m}$ | | $L_{xy}(B)$ | $\geq 300~\mu\mathrm{m}$ | | $\chi_{3D}^{\widetilde{2}_{3D}^{s}}(B)$ | ≤ 7 | | isolation $I_{R=1}$ | ≥ 0.5 | ### DATA SAMPLE 1fb⁻¹ #### Cuts optimized for rare modes | variable | cut | |-------------------------|--------------------------------------| | # axial COT SL | $\geq 2(5 \text{ hits})$ | | # stereo COT SL | $\geq 2(5 \text{ hits})$ | | # $r - \phi$ SVXII hits | ≥ 3 | | tracking algorithm | sil. $r-\phi$ and $90^{\circ}z$ hits | | $\mid \eta \mid$ | ≤1 | | p_T | $\geq 2~{ m GeV/c}$ | | $p_T(1) + p_T(2)$ | $\geq 5.5 \text{ GeV/c}$ | | $q(1) \cdot q(2)$ | < 0 | | $\Delta\phi$ | ≥20° | | $\Delta\phi$ | ≤135° | | $\mid d_0 \mid$ | \geq 120 μ m | | $ d_0 $ | ≤ 1 mm | | $d_0(1) \cdot d_0(2)$ | <0 cm ² | | variable | cut | |------------------------------|--------------------------| | | | | $\mid \eta(B) \mid$ | ≤ 1 | | $\mid d_0(B) \mid$ | $\leq 60~\mu\mathrm{m}$ | | $L_{xy}(B)$ | $\geq 350~\mu\mathrm{m}$ | | $L_{xy}(B) \ \chi^2_{3D}(B)$ | ≤ 5 | | isolation $I_{R=1}$ | ≥ 0.525 | ## ACP cuts: physical parameters $$A_{\mathsf{CP}} = \frac{N(\overline{B}^0 \to K^- \pi^+) - N(B^0 \to K^+ \pi^-)}{N(\overline{B}^0 \to K^- \pi^+) + N(B^0 \to K^+ \pi^-)} \quad = \quad -0.086 \pm 0.023 \; (stat.) \pm 0.009 \; (syst.)$$ $$\frac{BR(B^0 \to \pi^+\pi^-)}{BR(B^0 \to K^+\pi^-)} = 0.259 \pm 0.017 \text{ (stat.)} \pm 0.016 \text{ (syst.)}$$ $$\frac{f_s \cdot BR(B_s^0 \to K^+K^-)}{f_d \cdot BR(B^0 \to K^+\pi^-)} = 0.324 \pm 0.019 \text{ (stat.)} \pm 0.041 \text{ (syst.)}$$ #### With HEAG 2006. $$BR(B^0 \to \pi^+\pi^-) = (5.10 \pm 0.33 \ (stat.) \pm 0.36 \ (syst.)) \times 10^{-6}$$ $$BR(B_s^0 \to K^+K^-) = (24.4 \pm 1.4 \ (stat.) \pm 4.6 \ (syst.)) \times 10^{-6}$$ ## BsKpi cuts: physical parameters (1) $$A_{\text{CP}} = \frac{N(\overline{B}_{s}^{0} \to K^{+}\pi^{-}) - N(B_{s}^{0} \to K^{-}\pi^{+})}{N(\overline{B}_{s}^{0} \to K^{+}\pi^{-}) + N(B_{s}^{0} \to K^{-}\pi^{+})} = 0.39 \pm 0.15 \; (stat.) \pm 0.08 \; (syst.)$$ $$\frac{N(\overline{B}^{0} \to K^{-}\pi^{+}) - N(B^{0} \to K^{+}\pi^{-})}{N(\overline{B}_{s}^{0} \to K^{+}\pi^{-}) - N(B_{s}^{0} \to K^{-}\pi^{+})} = -3.21 \pm 1.60 \; (stat.) \pm 0.39 (sys.)$$ $$N_{\text{raw}}(B_{s}^{0} \to K^{-}\pi^{+}) = 230 \pm 34 \; (stat.) \pm 16 \; (syst.)$$ $$\frac{f_{s} \cdot BR(B_{s}^{0} \to K^{-}\pi^{+})}{f_{d} \cdot BR(B^{0} \to K^{+}\pi^{-})} = 0.066 \pm 0.010 \; (stat.) \pm 0.010 \; (syst.)$$ #### With HFAG 2006: $$BR(B_s^0 \to K^- \pi^+) = (5.0 \pm 0.75 \ (stat.) \pm 1.0 \ (syst.)) \times 10^{-6}$$ ## BsKpi cuts: physical parameters (2) $$N_{\text{raw}}(B_s^0 \to \pi^+ \pi^-) = 26 \pm 16 \; (stat.) \pm 14 \; (syst.)$$ $$N_{\text{raw}}(B^0 \to K^+ K^-) = 61 \pm 25 \; (stat.) \pm 35 \; (syst.)$$ $$\frac{f_s \cdot BR(B_s^0 \to \pi^+ \pi^-)}{f_d \cdot BR(B^0 \to K^+ \pi^-)} = 0.007 \pm 0.004 \; (stat.) \pm 0.005 \; (syst.)$$ $$\frac{BR(B^0 \to K^+ K^-)}{BR(B^0 \to K^+ \pi^-)} = 0.020 \pm 0.008 \; (stat.) \pm 0.006 \; (syst.)$$ #### With HFAG 2006: $$BR(B^0 \to K^+K^-) = (0.39 \pm 0.16 \; (stat.) \pm 0.12 \; (syst.)) \times 10^{-6}$$ $BR(B^0 \to K^+K^-) \in [0.1 - 0.7] \cdot 10^{-6} @ 90\% \; C.L.$ $BR(B_s^0 \to \pi^+\pi^-) = (0.53 \pm 0.31 \; (stat.) \pm 0.40 \; (syst.)) \times 10^{-6}$ $BR(B_s^0 \to \pi^+\pi^-) < 1.36 \cdot 10^{-6} @ 90\% \; C.L.$ ## BsKpi cuts: physical parameters (3) $$N_{ m raw}(\Lambda_b^0 o p K^-) = 156 \pm 20 \; (stat.) \pm 11 \; (syst.)$$ $N_{ m raw}(\Lambda_b^0 o p \pi^-) = 110 \pm 18 \; (stat.) \pm 16 \; (syst.)$ $rac{BR(\Lambda_b^0 o p \pi^-)}{BR(\Lambda_b^0 o p K^-)} = 0.66 \pm 0.14 \; (stat.) \pm 0.08 \; (syst.)$ Systematics: $A_{CP}(B^0 \rightarrow K^+\pi^-)$ | source | shift wrt central fit | |--|-----------------------| | mass scale | 0.0004 | | asymmetric momentum-p.d.f | 0.0001 | | $d\mathbf{E}/d\mathbf{x}$ | 0.0064 | | input masses | 0.0054 | | combinatorial background model | 0.0027 | | momentum background model | 0.0007 | | MC statistics | _ | | charge asymmetry | 0.0014 | | $\Delta\Gamma_s/\Gamma_s$ Standard Model | _ | | lifetime | _ | | isolation efficiency | _ | | XFT-bias correction | - | | TOTAL (sum in quadrature) | 0.009 | ## Systematics $B^0 \rightarrow \pi^+\pi^-$ and $B^0 \rightarrow K^+K^-$ $$\frac{BR(B^0 \to \pi^+ \pi^-)}{BR(B^0 \to K^+ \pi^-)} \quad \frac{f_s \cdot BR(B_s^0 \to K^+ K^-)}{f_d \cdot BR(B^0 \to K^+ \pi^-)}$$ | source | shift wrt central fit | |--|-----------------------| | mass scale | 0.0036 | | asymmetric momentum-p.d.f | 0.0006 | | $d\mathbf{E}/d\mathbf{x}$ | 0.0129 | | input masses | 0.0050 | | combinatorial background model | 0.0020 | | momentum background model | 0.0010 | | MC statistics | 0.0011 | | charge asymmetry | - | | $\Delta\Gamma_s/\Gamma_s$ Standard Model | - | | lifetime | - | | isolation efficiency | - | | XFT-bias correction | 0.0050 | | TOTAL (sum in quadrature) | 0.0165 | | shift wrt central fit | |-----------------------| | 0.0034 | | 0.0030 | | 0.0107 | | 0.0050 | | 0.0020 | | 0.0060 | | 0.0012 | | _ | | 0.0060 | | 0.0060 | | 0.0370 | | 0.0080 | | 0.0413 | Isolation efficiency ε(B⁰)/ε(B⁰_s) from the data using 180 pb⁻¹ ## A_{CP}(B⁰→K⁺π⁻) cuts: other fit parameters #### Combinatorial background | parameter | value | |-----------------------------|-------------------| | f_{π^+} (combinatorial) | 0.545 ± 0.017 | | f_{e^+} (combinatorial) | 0.036 ± 0.005 | | f_p (combinatorial) | 0.080 ± 0.025 | | f_{K^+} (combinatorial) | 0.337 ± 0.031 | | f_{π^-} (combinatorial) | 0.533 ± 0.018 | | f_{e^-} (combinatorial) | 0.030 ± 0.005 | | $f_{ar{p}}$ (combinatorial) | 0.132 ± 0.027 | | $f_{K^{-}}$ (combinatorial) | 0.304 ± 0.033 | ### B→3body background | fraction of physics bckg (ARGUS norm.) | 0.197 ± 0.016 | |--|--------------------| | ${ m ARGUS} \; { m cut} ext{-off} \; [{ m GeV}/c^2]$ | 5.135 ± 0.001 | | ARGUS shape | 8.467 ± 3.45 | | f_{π} (ARGUS) | 0.728 ± 0.027 | | f_K (ARGUS) | 0.272 ± 0.027 | | background fraction | 0.481 ± 0.008 | | $oldsymbol{c}_1$ (background shape) | -1.221 ± 0.124 | ### Significance Table (Statistical + systematic) raw yield ± stat. from fit on data systematic error | mode | yield | TOY stat. $(f=0)$ | syst. | Sign.(TOY stat.($f = 0$) + syst.) | |--|----------------|-------------------|-------|-------------------------------------| | $B^0 \to K^+K^-$ | $61{\pm}25$ | 21 | 35 | 1.5σ | | | $26{\pm}16$ | 11 | 14 | 1.5σ | | $B_s^0 o K^-\pi^+$ | $230\!\pm\!34$ | 23 | 16 | 8.2σ | | $\Lambda_h^0 o p\pi^-$ | $110{\pm}18$ | 9 | 16 | 5.9σ | | $egin{array}{l} \Lambda_b^0 ightarrow p\pi^- \ \Lambda_b^0 ightarrow pK^- \end{array}$ | $156{\pm}20$ | 8 | 11 | 11.5σ | | | | | | | statistical uncertainty from pseudo experiments where the fractions of rare modes are fixed =0. statistical error from the pseudo-experiment + systematic error. (Sum in quadrature). ## B⁰_π+π-/B⁰_K+π- ratio of decay rates $$\frac{BR(B^{0} \to \pi^{+}\pi^{-})}{BR(B^{0} \to K^{+}\pi^{-})} = \frac{N(B^{0} \to \pi^{+}\pi^{-})}{N(B^{0} \to K^{+}\pi^{-})}\Big|_{\text{raw}} \left(\frac{\epsilon_{kin}(B^{0} \to K^{+}\pi^{-})}{\epsilon_{kin}(B^{0} \to \pi^{+}\pi^{-})}\right) \left(\frac{c_{XFT}(B^{0} \to K^{+}\pi^{-})}{c_{XFT}(B^{0} \to \pi^{+}\pi^{-})}\right)$$ Different efficiency of the selection due to kinematical difference between the decays, and different decay-in-flight and interaction probability between K and π . Get from Monte Carlo the ratio of kinematics efficiencies. $\sim 3\%$ correction π ionizes more than K; this introduces a bias in the trigger on tracks within the drift chamber (XFT). Use data from unbiased legs in $D^+_K K^- \pi^+ \pi^+$ sample. $\sim 5\%$ correction ### How dE/dx separates signals To separate signals need all information. The dE/dx works best where kinematics fails (i.e. $B^0 \to \pi^+\pi^- \text{ vs } B^0_{\text{ s}} \to \text{K}^+\text{K}^-$). $$\label{eq:D(track)} \begin{split} \text{ID(track)} &= \frac{\frac{dE}{dx}\Big|_{meas}(track) - \frac{dE}{dx}\Big|_{exp-\pi}(track)}{\frac{dE}{dx}\Big|_{exp-K}(track) - \frac{dE}{dx}\Big|_{exp-\pi}(track)}. \end{split}$$ <ID>(pion hypothesis) = 0 <ID>(kaon hypothesis) = 1 #### PID separation ππ/KK ≅2α